Exercice fonction de la borne supérieure pour la classe SG travaillé par Ghiwa Lakis

Email: ghiwalakis@gmail.com

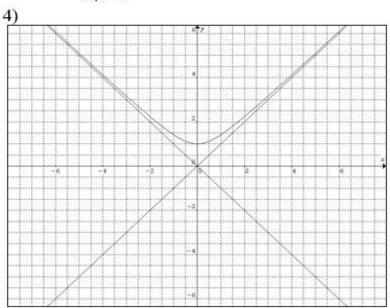
Exercice 1 : Fonction de la borne supérieure

- A- On considère la fonction $f(x) = \sqrt{x^2 + 1}$ où x est un réel.
- 1- Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} f(x) + x$ et donner une interprétation graphique des résultats.
- 2- Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} f(x) x$ et donner une interprétation graphique des résultats.
- 3- Etudier les variations de f(x) et dresser le tableau de variations.
- 4- Tracer le graphe (Γ) de f(x) dans un repère orthonormé.
- 3- Soit la fonction $F(x) = \int_{1}^{x} f(t)dt$ où x est un réel, et (C) son graphe dans un repère orthonormé
- 1- Etudier le signe de F(x)
- 2- Utiliser le graphe (Γ) pour donner une valeur approchée de $\int_0^1 f(t)dt$. Dans la suite on prendra F(0) = b avec $b \approx -1,1478$
- 3- a) Montrer que F(-x) = 2b F(x). Que représente le point I(0,b) pour (C).
 - b) Ecrire une équation de la tangente en I à (C).
- 4- Montrer que si t>0 alors f(t) > t et en déduire $\lim_{x \to +\infty} F(x)$ et $\lim_{x \to +\infty} \frac{F(x)}{x}$ et donner une interprétatic graphique des résultats.
- 5- Calculer $\lim_{x \to -\infty} F(x)$ et $\lim_{x \to -\infty} \frac{F(x)}{x}$ et donner une interprétation graphique des résultats.
- 6- Montrer que F(-1) = 2b et tracer (C).
- 7- a) Montrer que $F(x) = \frac{1}{2} \left[x\sqrt{x^2 + 1} + \ln(x + \sqrt{x^2 + 1}) \sqrt{2} \ln(1 + \sqrt{2}) \right]$.
 - b) En déduire que si $x \ge 1$ alors $\ln(\frac{x + \sqrt{x^2 + 1}}{1 + \sqrt{2}}) \ge \sqrt{2} x\sqrt{x^2 + 1}$.

A-1)
$$\lim_{-\infty} f(x) = +\infty$$
 et $\lim_{-\infty} (f(x) + x) = \lim_{-\infty} (\sqrt{1 + x^2} + x) = \lim_{-\infty} (\frac{1}{\sqrt{1 + x^2} - x}) = 0$ donc la droite d'équation y=-x est asymptote en $-\infty$

2)
$$\lim_{+\infty} f(x) = +\infty$$
 et $\lim_{+\infty} (f(x) - x) = \lim_{-\infty} (\sqrt{1 + x^2} - x) = \lim_{-\infty} (\frac{1}{\sqrt{1 + x^2} + x}) = 0$ donc la droite d'équation y=x est asymptote en $+\infty$

3) $f'(x) = \frac{2x}{2\sqrt{1+x^2}}$ a le signe de x donc minimum=1 pour x=0.



Correction

B-1)
$$f(t) = \sqrt{1+t^2} > 0$$
 donc $\sin x < 1$ $F(x) < 0$ et $\sin x > 1$ $F(x) > 0$

2) une valeur approchée est l'aire du trapèze =
$$(\frac{1+\sqrt{2}}{2})(1) \approx 1207$$

3)
$$F(-x) = \int_{1}^{x} f(t)dt$$
 soit $u = -t$ alors $du = -dt$, $F(-x) = \int_{-1}^{x} f(-u)(-du) = -\int_{-1}^{x} f(u)du = -\int_{-1}^{1} f(u)du - \int_{1}^{x} f(u)du$
On $a f(-u) = f(u)$ donc $\int_{-1}^{1} f(u)du = 2\int_{0}^{1} f(u)du = -2b$ alors $F(-x) = 2b - F(x)$

I(0,b) est centre de symétrie car F(0-x)+F(0+x)=2b.

4) Sit > 0 alors
$$f(t) = \sqrt{1+t^2} > \sqrt{t^2 = t}$$
 par suite
$$\lim_{x \to \infty} F(x) > \lim_{x \to \infty} \int_{1}^{x} t dt = \lim_{x \to \infty} \left(\frac{x^2}{2} - \frac{1}{2}\right) = +\infty \text{ alors } \lim_{x \to \infty} F(x) = +\infty \text{ et } \lim_{x \to \infty} \frac{F(x)}{x} = \lim_{x \to \infty} \frac{f(x)}{1} = +\infty$$

Donc direction asymptotique parallèle à (y'y). 5) $\lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} (2b - F(-x)) = 2b - \lim_{x \to +\infty} F(x) = -\infty$ et $\lim_{x \to -\infty} \frac{F(x)}{x} = \lim_{x \to -\infty} \frac{f(x)}{1} = +\infty$

Donc direction asymptotique parallèle à (y'y).

6) F(-1) =2b-F(1) =2b-0=2b. (graphe).