Pressure

1- Notion of Pressure

On snow, a non-equipped walking man leaves deep foot prints; if he uses the skis, the prints are less deep. We say that pressure on snow becomes less.

- On what factors does the pressure depend?
- How can we show evidence of the influence of these factors?

2- Definition of Pressure on a plane surface:

The force \vec{F} of magnitude F applied perpendicularly and uniformly on a plane surface (S), the pressure exerted is the force acting on a unit area. So The pressure expressed in Pascal's $(\mathbf{P a})$ and defined as the ratio of the magnitude of the pressing force \mathbf{F} to the area of the surface of contact \mathbf{S} :

$$
\mathbf{P}=\frac{\boldsymbol{F}}{\boldsymbol{S}} \left\lvert\, \begin{aligned}
& \mathbf{P}=\text { pressure in }(\mathbf{P a}) \\
& \mathbf{F}=\text { force applied in }(\mathbf{N}) \\
& \mathbf{S}=\text { contact area in }\left(\mathbf{m}^{2}\right)
\end{aligned}\right.
$$

Example-1:

Consider a rectangular brick have a weight 300 N have the following dimensions: $\mathrm{L}=2 \mathrm{~m}$, $\mathrm{W}=1 \mathrm{~m}, \mathrm{H}=0.2 \mathrm{~m}$. Calculate the pressure exerted by brick for its three different faces.

$\mathrm{S}=2 \mathrm{~m} \times 1 \mathrm{~m}=2 \mathrm{~m}^{2}$
$\mathrm{F}=300 \mathrm{~N}$
$P=\frac{300}{2}=150 \mathrm{~Pa}$

$$
\begin{aligned}
& \mathrm{S}=2 \mathrm{~m} \times 0.2 \mathrm{~m}=0.4 \mathrm{~m}^{2} \\
& \mathrm{~F}=300 \mathrm{~N} \\
& \mathrm{P}=\frac{300}{0.4}-750 \mathrm{~Pa}
\end{aligned}
$$

$5-1 \mathrm{~m} \times 0.2 \mathrm{~m}=0.2 \mathrm{~m}^{2}$
$F=300 \mathrm{~N}$
$\mathrm{P}=\frac{300}{0.2}=1500 \mathrm{Po}$

- We notice that the face that has smallest surface area have the highest pressure so pressure inversely proportion to surface area at a constant force.

Example-2:

Consider a three rectangular brick have different weights $300 \mathrm{~N}, 600 \mathrm{~N}, 900 \mathrm{~N}$ have the same surface area $\mathbf{S}=\mathbf{2} \mathbf{m}^{\mathbf{2}}$ are put on flour. Calculate the pressure exerted by brick for its three different faces.

- For brick -1

$$
\mathbf{P}_{1}=\frac{F 1}{S}=\frac{\mathbf{3 0 0}}{2}=150 \mathrm{pa} .
$$

- For brick -2
$\mathbf{P}_{2}=\frac{\boldsymbol{F} \mathbf{2}}{\boldsymbol{S}}=\frac{\mathbf{6 0 0}}{\mathbf{2}}=300 \mathrm{pa}$.
- For brick -3
$\mathbf{P}_{3}=\frac{\boldsymbol{F} 3}{\boldsymbol{S}}=\frac{\mathbf{9 0 0}}{\mathbf{2}}=450 \mathrm{pa}$.
- We notice that the brick that has highest weight force (brick-3) a have the highest pressure and highest depth in flour, so pressure proportion to pressing force at a constant surface area.

Revision:

- Density:

$$
\boldsymbol{\rho}=\frac{m}{V} \longrightarrow \begin{array}{l|l}
\text { or } \\
\mathbf{m}=\mathbf{V x} \boldsymbol{\rho} & \begin{array}{l}
\boldsymbol{\rho}=\text { density }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
\mathbf{M}=\text { mass }(\mathrm{Kg}) \\
\mathbf{V}=\text { volume }\left(\mathrm{m}^{3}\right)
\end{array}
\end{array}
$$

- $\boldsymbol{\rho}_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}=1 \mathrm{~g} / \mathrm{cm}^{3}$

$$
\left(\mathrm{g} / \mathrm{cm}^{3}\right) \xrightarrow{\mathrm{x} 1000}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)
$$

- Volume:

$$
\begin{array}{l|l}
\text { V = S } \times \mathrm{H} & \begin{array}{l}
\mathrm{H}=\text { height }(\mathrm{m}) \\
\mathrm{S}=\text { surface } \operatorname{area}\left(\mathrm{m}^{2}\right) \\
\mathrm{V}=\text { volume }\left(\mathrm{m}^{3}\right)
\end{array}
\end{array}
$$

- Mass:
$M=V x \rho$ and $V=S x H \Rightarrow m=S x H x \rho$
- Rule of some surface area:
- square $S=a^{2}$
- rectangle $S=L x W$
- Circle $S=\pi r^{2}$

3- Pressure in Liquids.
3.1- Liquid exerts a pressure on all bodies immersed in it. The pressure due to the liquid $\mathbf{P}_{\mathbf{A}}$ at a point A at height \mathbf{h} in a liquid at rest, and of density $\boldsymbol{\rho}$ is given by following expression:

$$
\mathbf{P}=\rho . g . h
$$

3.2- Derivation of expression is as follow:

$$
\mathrm{P}=\frac{F}{S}=\frac{m \cdot g}{s}=\frac{\rho \cdot \mathrm{V} \cdot \mathrm{~g}}{s}=\frac{\rho . S . h . g}{s} \Rightarrow \quad \mathbf{P}=\boldsymbol{\rho} . \mathbf{g} \cdot \mathbf{h}
$$

Note: pressure of liquid can be measure by manometric gauge

3.3- Pressure is proportion to:

a. As ρ increase, where g and h constant, P increase (density proportion to pressure)
b. As h increase, where g and ρ constant, P increase. (height proportion to pressure)

Example:

Calculate the pressure due to liquid, at point A inside the closed container.
Given: $\rho_{\text {water }}=1 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{~g}=10 \mathrm{~N} / \mathrm{kg}, \mathrm{h}_{\mathrm{A}}=15 \mathrm{~cm}$.
Given: $\rho_{\text {water }}=1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\mathrm{h}_{\mathrm{A}}=15 \mathrm{~cm}=15 / 100=0.15 \mathrm{~m} .
$$

$$
\mathrm{P}=\rho . \mathrm{g} . \mathrm{h}=1000 \times 10 \times 0.15=1500 \mathrm{pa}
$$

3.4- Pressure at two point in liquid:

In the same liquid and at same horizontal level pressure is the same.

Example-1:

Determine at which points the pressure is the same or different.

- The two point A and C are in same horizontal level and in same liquid so at these two-point pressure is the same $\left(\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{C}}\right)$

- The two point A and B are not in same horizontal level so at these two-point pressure is different $\left(\mathrm{P}_{\mathrm{A}} \neq \mathrm{P}_{\mathrm{B}}\right)$.

Example -2:

Consider a two different liquid in a \mathbf{U} tube:

Determine at which points the pressure is the same or different.

- The two-point C and D are in same horizontal level and in same liquid so the at these two-point pressure is the same $\left(\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{D}}\right)$
- The two-point A and B are in same horizontal level but in different liquids so the at these two-point pressure is different $\left(\mathrm{P}_{\mathrm{A}} \neq \mathrm{P}_{\mathrm{B}}\right)$.

3.5- Principle of hydrostatic

The difference of pressure between two points A and B in a liquid at rest is given by the fundamental principle of hydrostatic.

$$
\Delta P=P_{B}-P_{A}=\rho \times g \times\left(h_{B}-h_{A}\right)=\rho \times g \times H
$$

Where H is the distance between point A and B

4- Atmospheric pressure:

The only pressure present on surface of a liquid is atmospheric pressure, and the instrument used to measure atmospheric pressure is Barometer. knowing that $\mathrm{P}_{\mathrm{atm}}$ equivalent to pressure of mercury of height $76 \mathrm{~cm} .\left(\mathrm{P}_{\mathrm{atm}}=\mathrm{P}_{\mathrm{Hg}}\right.$ of height 76 cm .) so $P_{\text {atm }}=103360$ pa

5- Total pressure:

The pressure $\mathbf{P}_{\mathbf{A}}$ exerted from liquid at point A and also there is a pressure on surface of a liquid that it is contact with air which is atmospheric pressure $\mathbf{P}_{\mathrm{atm}}$, so total pressure $\mathbf{P}_{\mathbf{t}}$ at point A it given by the following expression:

$$
\mathbf{P}_{\mathrm{t}}=\mathbf{P}_{\mathrm{A}}+\mathbf{P}_{\mathrm{atm}}
$$

Example-1:

A group filled the tube (T) completely with mercury of density $\rho_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$, then turned it upside down and immersed it in a container containing mercury. The level of the mercury dropped down and settled at 76 cm above the free surface of the mercury that is found in the container. Given $g=10 \mathrm{~N} / \mathrm{kg}$

1- What is the value of the pressure P_{C} at C ? Why?
2- Determine, in Pascal, the value of the pressure P_{Hg} exerted by mercury at B.
3- Determine, in Pascal, the value of the total pressure P_{B} at B.

4- The pressure at A and the pressure at B have the same value. Why?
5- Deduce the value of the atmospheric pressure $\mathrm{P}_{\mathrm{atm}}$.

solution:

given: $\mathrm{h}=76 \mathrm{~cm}=0.76 \mathrm{~m}, \boldsymbol{\rho}_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g}=10 \mathrm{~N} / \mathrm{kg}$.
1- $P_{C}=0$ pa, since above point C there is vacuum and vacuum don't exert any pressure.
2- $\mathrm{P}_{\mathrm{Hg}}=\rho_{\mathrm{Hg}} . \mathrm{g} . \mathrm{h}=13600 \times 10 \times 0.76=103360 \mathrm{pa}$.
3- Above point B there is mercury and vacuum so total pressure at point B is:
$\mathrm{P}_{\mathrm{t}}=\mathrm{P}_{\mathrm{Hg}}+\mathrm{P}_{\mathrm{Vaccum}}$
$\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{Hg}}+\mathrm{Pc}=103360+0=103360$ pa.
4- The two point A and B are in same horizontal level and in same liquid so the at these two-point pressure is the same $\left(\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}\right), \mathrm{P}_{\mathrm{A}}=103360$ pa.
5- Point A is at surface of liquid so pressure that exerted at point A equal to atmospheric pressure_ $\left(\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}\right)=>\mathrm{P}_{\mathrm{atm}}=103360$ pa.

Example-2:

Consider a U tube containing a certain amount of water (figure 1).
Given: atmospheric pressure: Pat $=76 \mathrm{~cm}$ of mercury; Density of mercury: $\rho_{\mathrm{Hg}}=13600$ $\mathrm{kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.

Figaryl

ryare 2

1- Calculate, in Pa the atmospheric pressure $\mathrm{P}_{\mathrm{atm}}$.
2- We want to determine the density ρ^{\prime} of a certain liquid (L) that does not mix with water. For this reason, we pour in branch (1) of the tube an amount of oil to a height $\mathrm{h}=20 \mathrm{~cm}$ and of density $\rho_{\text {oil }}=900 \mathrm{~kg} / \mathrm{m}^{3}$ and in branch (2) a certain amount of (L) to a height $\mathrm{h}^{\prime}=16 \mathrm{~cm}$. The surfaces of separation (water-oil) and (water-liquid) are at the same horizontal plane. (Figure 2)
a) Determine, in Pa , the value of the pressure $\mathbf{P}_{\text {oil }}$ at A exerted by oil.
b) Determine, in Pa , the value of the total pressure \mathbf{P}_{A} at A .
c) Deduce, in Pa, the value of the total pressure at B .
d) Give the expression of the total pressure \mathbf{P}_{B} at B as a function of ρ^{\prime}.
e) Deduce the value of ρ^{\prime}.

Solution:

given: $\mathrm{h}=76 \mathrm{~cm}=0.76 \mathrm{~m}, \boldsymbol{\rho}_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g}=10 \mathrm{~N} / \mathrm{kg}$.

1. $P_{a t m}=\rho_{\mathrm{Hg}} . g . \mathrm{h}=13600 \times 10 \times 0.76=103360 \mathrm{pa}$.
2. Given: in branch-1 (oil) $\mathrm{h}=20 \mathrm{~cm}=0.2 \mathrm{~m}, \rho_{\text {oil }}=900 \mathrm{~kg} / \mathrm{m}^{3}$ in branch -2 (liquid) $\mathrm{h}^{\prime}=16$ $\mathrm{cm}=0.16 \mathrm{~m}, \rho^{\prime}=$?
a) $\mathrm{P}_{\text {oil }}=\rho_{\text {oil }} . \mathrm{g} . \mathrm{h}=900 \times 10 \times 0.2=1800 \mathrm{pa}$.
b) above point A there is oil and air so total pressure at point A is:
$\mathbf{P}_{\mathrm{A}}=\mathrm{P}_{\text {oil }}+\mathrm{P}_{\mathrm{atm}}=103360+1800=105160 \mathrm{pa}$.
c) The two point A and B are in same horizontal level and in same liquid so the at these two-point pressure is the same $\left(\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}\right), \mathrm{P}_{\mathrm{B}}=105160$ pa.
d) above point B there is a liquid and air so total pressure at point B is:

$$
\begin{aligned}
P_{\text {B }} & =P_{\text {liquid }}+P_{\text {atm }} \\
& =\rho^{\prime} \cdot g \cdot h^{\prime}+P_{\text {atm }} \\
& =\rho^{\prime} \times 10 \times 0.16+103360 \\
& =1.6 \rho \cdot+103360
\end{aligned}
$$

e) $105160=1.6 \rho+103360$

$$
\begin{aligned}
\rho^{\prime} & =(105160-103360) / 1.6 \\
& =1125 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

5- Pascal's Theorem:

5.1- Definition

Liquid bodies transmit totally to all the points in this liquid and in all directions and equally any variation of pressure they undergo.

5.2- Hydraulic press:

- Before pressing: $\left(\mathbf{P}_{\mathbf{A}}=\mathbf{P}_{\mathbf{A t m}}\right.$ and $\left.\mathbf{P}_{\mathbf{B}}=\mathbf{P}_{\mathbf{A t m}}\right)$
- After pressing: $\left(\mathbf{P}_{\mathbf{A}},=\mathbf{P}_{\text {Atm }}+\frac{\boldsymbol{F} \mathbf{1}}{\boldsymbol{S 1}}\right.$ and $\left.\mathbf{P}_{\mathrm{B}},=\mathbf{P}_{\text {Atm }}+\frac{\boldsymbol{F} \mathbf{2}}{\boldsymbol{S 2}}\right)$.
- Variation of ΔP :

$$
\begin{aligned}
& \text { ○ } \Delta \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}},-\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{Atm}}+\frac{F 1}{S 1}-\mathbf{P}_{\mathrm{Atm}}=\frac{F 1}{S 1} \\
& \circ \Delta \mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{B}},-\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{Atm}}+\frac{F 2}{S 2}-\mathrm{P}_{\mathrm{Atm}}=\frac{F 2}{S 2}
\end{aligned}
$$

- But according to pascal's theorem, Liquid must transmit $\Delta \mathrm{P}$ from \mathbf{A} to \mathbf{B}, so:

$$
\begin{aligned}
\Delta \mathbf{P}_{\mathrm{A}} & =\Delta \mathbf{P}_{\mathrm{B}} \\
\frac{F 1}{S 1} & =\frac{F 2}{S 2}
\end{aligned}
$$

Example:

A hydraulic jack is used to lift cars. Document below shows the principle on which it works. Suppose that a downward force of magnitude $F_{1}=1 \mathrm{~N}$ acts on a piston of area $S_{1}=0.01 \mathrm{~m}^{2}$. The area of the other piston is $S_{2}=0.5 \mathrm{~m}^{2}$.

1- State pascal's theorem.
2- Calculate the variation of pressure $\Delta \mathbf{P}_{1}$ transmitted through the liquid.
3- Write down the relation between magnitude of the two forces.
4- Determine the magnitude F_{2} of the force acting on the other piston due to this variation.

Solution:

Given: $\mathrm{F}_{1}=1 \mathrm{~N}, \mathrm{~S}_{1}=0.01 \mathrm{~m}^{2}, \mathrm{~S}_{2}=0.5 \mathrm{~m}^{2}$.
1- Liquid bodies transmit totally to all the points in this liquid and in all directions and equally any variation of pressure they undergo.

2- $\quad \Delta \mathbf{P}_{1}=\frac{\boldsymbol{F} \mathbf{1}}{\boldsymbol{S 1}}=\frac{1}{0.01}=100 \mathrm{pa}$
3- According to pascal's theorem, Liquid must transmit same variation $\Delta \mathrm{P}$ from piston 1 to piston 2, so:

$$
\begin{aligned}
& \Delta P_{1}=\Delta P_{2} \\
& \frac{F 1}{S 1}=\frac{F 2}{S 2}
\end{aligned}
$$

4- $\frac{F 1}{S 1}=\frac{F 2}{S 2}=>F_{2} \times S_{1}=F_{1} \times S_{2}=>F_{2}=\frac{F 1 X S 2}{S 1}=\frac{1 \times 0.5}{0.01}=50 \mathrm{~N}$

